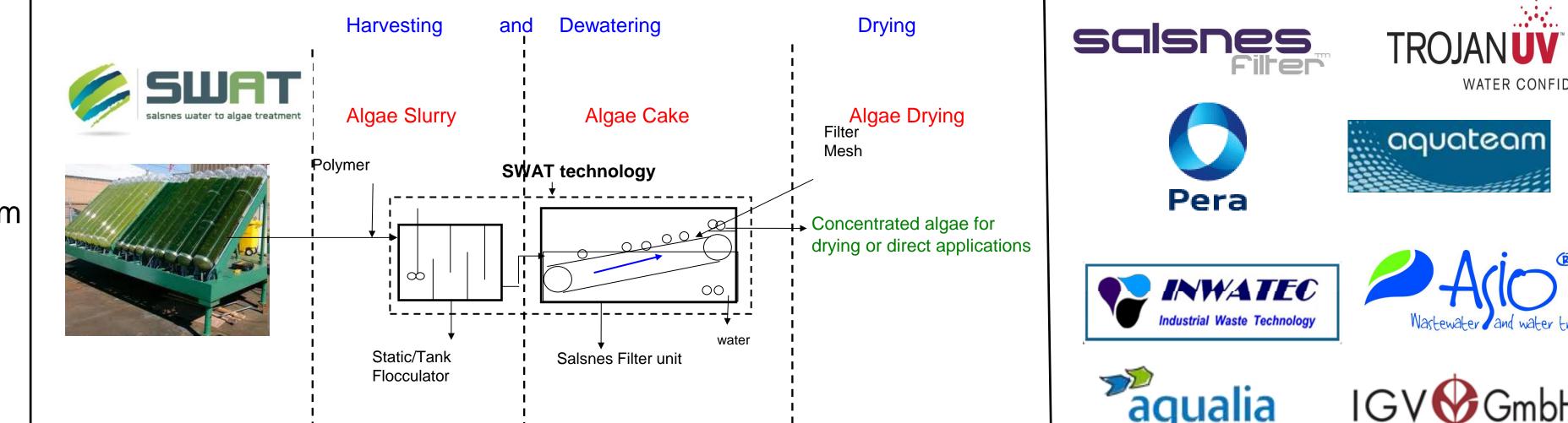
Recovering Microalgae Using a Salsnes Filter

A.K. Sahu*, H. Bedoya**, T. Wesche**, and B. Rusten*

* Aquateam-Norwegian water technology center as, Hasleveien 10, N-0571, Oslo, Norway (E-mail: ashish.sahu@aquateam.no)


** Department of Plant and Environmental Sciences, University of Life Sciences, Ås, Norway

WATER CONFIDENCE

Introduction & Objectives

- The overall goal is to develop a universal microalgae harvesting technology:
 - by building on the experiences gained from removal of particles from wastewater
 - by modifying the current wastewater technologies such as Salsnes Filter (SF)
- SF has been succesfully used for primary treatment of municipal wastewater

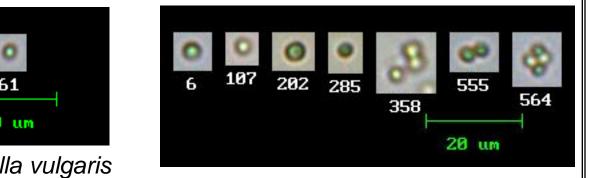
• use <0.08 kWh/m³ of algae

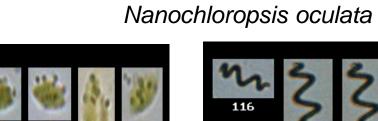
Salsnes Water to Algae Treatment (SWAT) filter technology

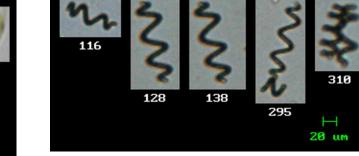

The SWAT team

Methods, Materials, Results

Culture, grow 5 species, evaluate cell size, growth conditions

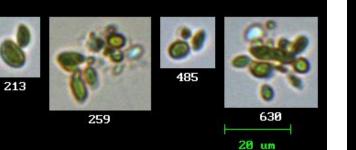

Open air tray photobioreactors natural light + air circulation

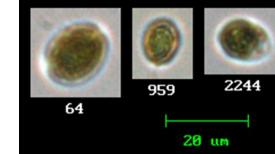



Portable FlowCam device

Species	Shape	Media	Avg particle size (L)	Number of particles analysed	Area based diameter	59 61 20 0
			μm	#	μm	Chlorella
Chlorella vulgaris	Spherical	FW	5.07	3838	3.99±1.26	
Dunaliella salina	Irregular	Μ	7.26	646	4.84±3.7	11 82
N. Oculata	Spherical	М	4.8	3805	3.76±0.94	
Scenedesmus sp	Rod	FW	20.01	440	14.7±6.61	Dunaliella
Wild type	Oval	WW	50.43	54	14.8±7.83	
Spirulina plantensis	Spiral	FW	111.99	3179	112± 80 (L) 47±36 (W)	213

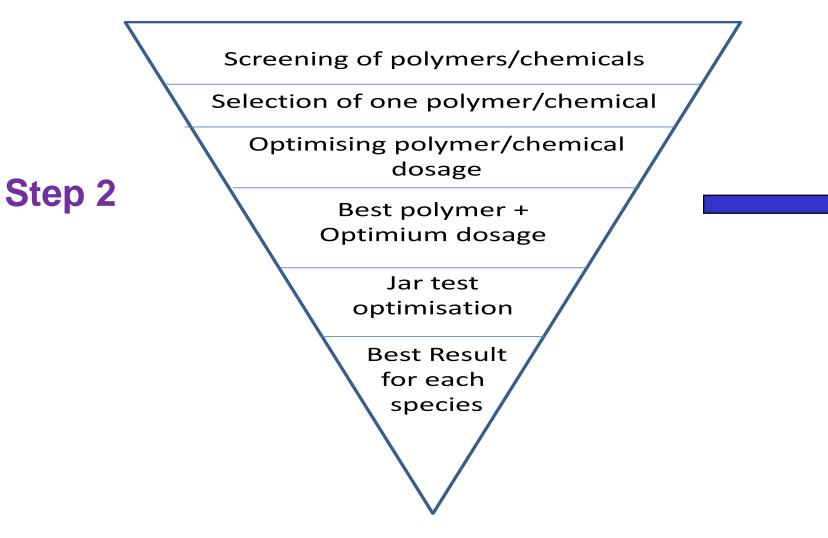
FW- fresh water; M-Marine; WW-Wastewater





lla salina

Spirulina plantensis

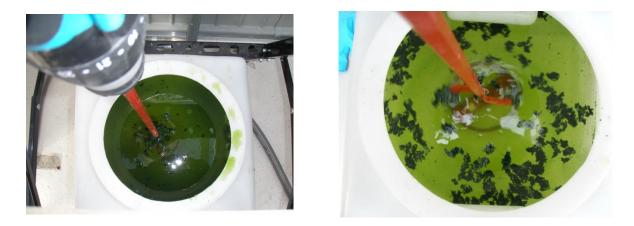


Scenedesmus sp.

Wild type sp.

Test different polymers + chemicals, determine mixing intensity

	Species	% Removal of Turbidity	Rapid mixing (300 rpm)	Slow mixing (30-50 rpm)
			S	min
	Chlorella vulgaris	95	10	5
1	Dunaliella salina	98.8	10	5
]	N. Oculata	79	20	10
	Scenedesmus sp	98.9	20	5
	Wild type	64	10	10



Kemira Jar Test Flocculator

300 400	20	\langle	50 30 50	10 15 5 10 15 5 5 10	
			50		

Mixing regimes with optimised dosage

Test different size flocculators, using scaled up G values

20 L tank flocculator

Step 3

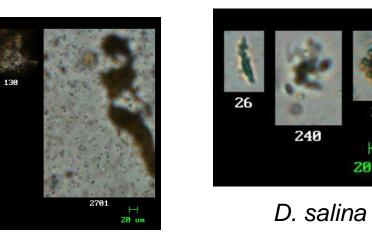
Bench Scale Asio Flocculator (BSAF)

The power requirements were calculated using Equation 1. This equation was introduced by Camp and Stein (1943) as a measureable average value to replace the local velocity gradient during turbulent mixing.

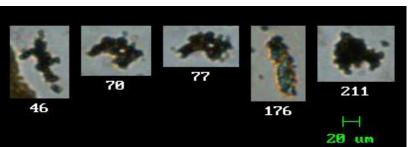
> G =(Equation 1)

- energy dissipation from mixing (W)
- absolute viscosity of the liquid volume of the tank (m³)

where


where

For a mechanical mixer, the power consumed by the mixer is given by (Bratby, 2006)


$P = \phi \cdot \rho \cdot n3 \cdot D5 (Nm/s)$	(Equation 2)
dimensionless power number	

	Rapid Mixing		Slow Mixing	
	rpm	S	rpm	Min
Jar Test	300	20	50	5
20 L	232	20	74	5
BSAF	95	20	30	5

Species	Avg floc size (L)	Number of flocs analysed	Area based diameter range
	μm	#	Sq. μm
Chlorella vulgaris	181.40	227	72.46±14.24
Dunaliella salina	71.35	428	41.91±9.85
N. Oculata	59.05	2650	35.29±8.66
Scenedesmus sp	78.21	4499	40.73±12.38
Wild type	90.96	892	52.28±14.49

Chlorella vulgaris

liquid density (kg/m3)

vviia type JZ.ZO±14.4J

Nanochlorropsis oculata

110 mm outer Ø 110 mm outer Ø Transparent PVC Тор 550 mm Step 4 550 mm Algae specie: Spirulina plantensis, 31.08.2012 90 80 70 Screw coupling O-ring or 60 oval to securely hold silicone gasket Sieve 50 top and bottom together during 40 Bottom testing 30 SS 20 50 - 60 mm ball valve $\leq -$ % 10 Sieve cloth opening, microns Bench scale Salsnes Filter Direct filtration (Absence of polymers)

Flocculation + Salsnes Filtration = SWAT technology

- Direct filtration results clearly showed that the tested algae species need to be flocculated in to larger particles in order to achieve the goal of 90% recovery when harvested on a filter mesh sieve
- Optimum flocculant and optimum dose is very dependent on the type of algae
- Very good flocculation could be achieved with all the tested algae species, but for some species it may not be achieved at an economically acceptable chemical dose
- Bench scale flocculation and Salsnes filtration resulted in 93 % and 96 % recovery of Chlorella vulgaris and Scenedesmus sp, respectively. Results based on TSS
- Pilot scale flocculation (20 L) and Salsnes filtration resulted in 92 % and 84% recovery of Nanochloropsis oculata and Wild *type sp*, respectively. Results based on TSS.

The research leading to these results have received funding from the European Union Seventh Framework Programme FP7 2011 under grant agreement n° 286840